UC Berkeley @, A.James Cark ~ UCISamueli

%S SCHOOL OF ENGINEERING School of Engineering Conference on Decision and Control

CDC2025

Incentive Design for Safe Nash Equilibrium
Learning in Large Populations via
Control Barrier Functions

Yifeng Xiao', Jair Cert’orio?, Nuno C. Martins?, Yasser Shoukry3, Pierluigi Nuzzo'

TUniversity of California, Berkeley
2University of Maryland, College Park
3University of California, Irvine



The Challenge: Safety-Aware Incentive Design for Population Games

 Genematos Systems whose behaviors emerge from the
po <4 ﬂ strategic decisions of a population of agents.
S e : -+ Evolutionary Dynamics Model (EDM):
<> power line ] 1 [ | £ governs how the population updates its
E I l l I £ strategies over time.
P [P <A ° « Exogenous System (ES) dynamics:
0 L describe how the system’s state evolves

Consumers in response to the population’s decisions.

How to design incentives that guide population behavior while ensuring
safety and stability?



Population Game Dynamics

Strategy set: {1, ...,n}, the set of strategies
available to agents.

Population states

» x;: the fraction of the population selecting strategy i
* x = {xq, ..., x,} is referred to as the population state

Payoff function
* p;: payoff obtained by following the i-th strategy
* p ={py, ..., 0n} is the payoff vector

payoffs
solbaiel)s

EDM specifies how the population state evolves in
response to given payoffs.

£(t) = V(p(t), z(1))
n
Vi(p, ) =Y (x;75i(p, ©) — zi7i; (p, )
j=1
where 7: R™ x X » R™" is a learning rule, i.e., revision proto%ol




Positive Correlation and Potential Function

» Alearning rule 7 is positive correlated (PC) if for
all (x,p) € XxR",

x#0eopTx>0

Consider a potential function u(x) capturing
information about payoffs,

p(x) = qu(x)

then the state trajectory always evolves in the
direction that increases the potential if x # 0.

* Alearning rule t is Nash stationary (NS) if, given
the best response map M(p) = argmax,p ' x:

x=0<x € M(p)




Control Barrier Function (CBF)

Given a system of the standard form:
z=f(z) + g(2)u,

with state z € D c R", input u € U c R™, and functions
f, g are Lipschitz continuous.

Consider § and h(2):
S={zeD:h(z) >0},
08 ={zeD:h(z) =0},
Int(8) ={z € D: h(z) > 0}.
~ | h(z)isaCBFifV,h(z) # 0 forall z € S and there exists

an extended class K function «, such that forall z € §,
there is u such that

Lsh(2) + Loh(2)u > —a(h(2))
where L; and L, denote the Lie derivatives along f and g.
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CBF-Based Population State Avoidance

Given an EDM x(t) satisfying the PC and NS conditions, and an unsafe region (Q,
along with CBF h(x), the payoff P(x) can be designed as:

P(z) =V h(z), z€ 09,.

Nagumo'’s theorem:
X\Q, is invariant <= h(z) >0, z € 99,.
PC condition:
i'p=a Vih(zx) >0 < h(z)>0.




Exogenous System Dynamics

Consider an ES coupled with the EDM and model it
yS with a general affine function:

y = F(y(0),x()) = F(y(©) + g(y(®) ' x(®),

where x is the population state, where f: Y - R"
and g: Y - R™™ are Lipschitz continuous functions.
We assume that if x(t) = x, the system has a unique
equilibrium point y*(x).

How to design incentives that guide population behavior while ensuring
safety and stability in exogeneous system?



System coupling with an EDM and an ES

Evolutionary Dynamics Model (EDM) | « ES evolves with respect to
z(t) = V(p(t),z(t)) o(® the population’s decisions.

z(t) | Payoff Mechanism - Unsafe region Q, is defined
p(t) = P(x(t), y(¢)) over y.

\ y(t) _
Exogenous System (ES)  Target point y*
y(t) = F(y(t),=(t))

y(t) ¢ an t Z 07

Goal: Design a payoff function P(x) to ensure
gnapay () y(t) = y® as t — oo.



Control Limits and Equilibrium Points

Source In coupled system, e.g., resource allocation, x;
denotes the proportion of control resources.

£V=1 xi(t) — 1

Introduce an auxiliary strategy xy.1:

?I:-I;I_l xi(t) — 1; Z?,:l xl'(t) <1

Consumers

S

N
Equilibrium Point: 9 =0 =2 = —(g(y*) )T f(y*), @hp1=1-) .
1=1

invertible



CBF-Based Safe Payoff Design

Attractive potential:
K
ua(w) i= =Stz — 2|3+

Repulsive potential:

’Uq-(il?, y) = qub(ma y)a

_ Ka
27

ES EDM
How to connect ¢ with h(y)?
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Connect ¢ with h(y)

Based on CBF definition, the ES state y will always be in Y\Q, as long as the
control action x is from

jccbf(y) — {.’L‘ € X: qb(ac, y) > O}a
¢(z,y) = Lyh(y) + Lyh(y)z + a(h(y)).

¢(x,y) can be used in the potential function:

ur(xa y) e= Kr¢($a y)

Combined potential function:  pominates when d(x,y) > 6

Qx()’) = X\“R:cbf (:V)

u(®,y) = w(@, Y uq(z) + (1 - w(z,y))ur(z,y)

Dominates when ¢(x,y) - 6, fora small § 11



Stability Analysis and Safety Condition

Payoff function:
P(iL’, y) - 7v$u($7 y):

scaling factor
Lyapunov function:

K
Ulx,y) = —u(x,y) +7a > U(x®,y5) =0,

forall (x,y) = (x5, y%).
And we want to prove the time derivative of U(x, y) is negative definite.

U(z,y) <0 <= a(z,y) >0

u(z,y) >0 < z' Vyu(z,y) +9' Vyu(z,y) >0

< 2
1
—xT'p>0
14 12



Stability Analysis and Safety Condition

&' Vau(z,y) + 9 Vyu(z,y) >0

minimize F(y,z)' V,u(z,y),
z,y

N

If uj, > 0, we get uu(x,y) > 0, otherwise

Theorem. Suppose the EDM satisfies the PC and NS conditions, and for any g > 0, there
exists a factor y such that fV(p, x) < V(yp, x). If the initial state (x,,y,) satisfies
d(xo,y0) = 0 and the target state (x°, y°) satisfies ¢p(x*,y*) > §, the payoff function is
designed as

P(x,y) = V,u(x,y),

which ensures the safety and asymptotic stability of the coupled system.



Simplified Drone System with Noise Control

%/# Noise Collection

* Two active drones with total resource constraints.

« EDM - x(t) - resource fractions; ES - y(t) - drone position.

» The restricted region is defined by the combined drone-collector distance:
Q, ={y € R* lly — 50||2 < 5}

Two drones cannot be close to the collector simultaneously.

Goal: Allocate control resources to guide the drones to a target while
satisfying the constraints.

14



Safe Control with CBF-Based Payoff Design

40

EDM State: Resource evolution  ES State: Drone position
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ES Trajectories with Different EDMs

70 70
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6071 —— Smith
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60 70 60 70
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Conclusions

Robustness?
Potential Design Convergence time?
Control Barrier Population

Function Games
Region Population
Mapping Strategies

Exogenous
System

High-Order System?

Real-world Applications?
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