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The Challenge: Safety-Aware Incentive Design for Population Games

Systems whose behaviors emerge from the 

strategic decisions of a population of agents.

• Evolutionary Dynamics Model (EDM): 

governs how the population updates its 

strategies over time.

• Exogenous System (ES) dynamics: 

describe how the system’s state evolves 

in response to the population’s decisions.
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How to design incentives that guide population behavior while ensuring 
safety and stability?



• Strategy set: 1, … , 𝑛 , the set of strategies 
available to agents.

• Population states
• 𝑥𝑖: the fraction of the population selecting strategy 𝑖

• 𝑥 = {𝑥1, … , 𝑥𝑛} is referred to as the population state

• Payoff function
• 𝑝𝑖: payoff obtained by following the 𝑖-th strategy

• 𝑝 = {𝑝1, … , 𝑝𝑛} is the payoff vector

• EDM specifies how the population state evolves in 
response to given payoffs. 

    where 𝜏:  ℝ𝑛 × 𝕏 → ℝ𝑛×𝑛 is a learning rule, i.e., revision protocol 

Population Game Dynamics
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Positive Correlation and Potential Function
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• A learning rule 𝜏 is positive correlated (PC) if for 
all 𝑥, 𝑝 ∈ 𝕏 × ℝ𝑛, 

ሶ𝑥 ≠ 0 𝑝⊤ ሶ𝑥 > 0

Consider a potential function 𝑢 𝑥  capturing 
information about payoffs,

𝑝 𝑥 = ∇𝑥𝑢 𝑥

then the state trajectory always evolves in the   
direction that increases the potential if ሶ𝑥 ≠ 0.

• A learning rule 𝜏 is Nash stationary (NS) if, given 
the best response map ℳ 𝑝 ≔ 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑝⊤𝑥: 

ሶ𝑥 = 0 𝑥 ∈ ℳ 𝑝

𝑢(𝑥) 𝒙

ሶ𝒙
𝒑



Given a system of the standard form:
ሶ𝑧 = 𝑓 𝑧 + 𝑔 𝑧 𝑢,

with state 𝑧 ∈ 𝔻 ⊂ ℝ𝑛, input 𝑢 ∈ 𝕌 ⊂ ℝ𝑚, and functions 
𝑓, 𝑔 are Lipschitz continuous.

Consider 𝒮 and ℎ(𝑧):

ℎ 𝑧 is a CBF if ∇𝑧ℎ 𝑧 ≠ 0 for all 𝑧 ∈ 𝜕𝒮 and there exists 
an extended class 𝒦 function 𝛼, such that for all 𝑧 ∈ 𝒮, 
there is 𝑢 such that  

where 𝐿𝑓 and 𝐿𝑔 denote the Lie derivatives along 𝑓 and 𝑔.

Control Barrier Function (CBF)
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Given an EDM ሶ𝑥(𝑡) satisfying the PC and NS conditions, and an unsafe region Ω𝑥 
along with CBF ℎ(𝑥), the payoff 𝑃(𝑥) can be designed as: 

CBF-Based Population State Avoidance
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Nagumo’s theorem:

PC condition:



Consider an ES coupled with the EDM and model it 
with a general affine function:

ሶ𝑦 = 𝐹 𝑦 𝑡 , 𝑥 𝑡 = 𝑓 𝑦 𝑡 + 𝑔 𝑦 𝑡
⊤

𝑥 𝑡 ,

where 𝑥 is the population state, where 𝑓:  𝕐 → ℝ𝑛 
and 𝑔:  𝕐 → ℝ𝑛×𝑚 are Lipschitz continuous functions. 
We assume that if 𝑥(𝑡) ≡ 𝑥, the system has a unique 
equilibrium point 𝑦∗(𝑥). 

Exogenous System Dynamics
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How to design incentives that guide population behavior while ensuring 
safety and stability in exogeneous system?

Ω𝑦

𝑦𝑠



System coupling with an EDM and an ES
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• ES evolves with respect to 
the population’s decisions.

• Unsafe region Ω𝑦 is defined 
over 𝑦. 

• Target point 𝑦𝑠

Goal: Design a payoff function 𝑃(𝑥) to ensure



In coupled system, e.g., resource allocation, 𝑥𝑖 
denotes the proportion of control resources.

Introduce an auxiliary strategy 𝑥𝑁+1:

Control Limits and Equilibrium Points
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σ𝑖=1
𝑁 𝑥𝑖 𝑡 = 1 

σ𝑖=1
𝑁+1 𝑥𝑖 𝑡 = 1,  σ𝑖=1

𝑁 𝑥𝑖 𝑡 ≤ 1  

𝑥1𝑥𝑖𝑥𝑁𝑥𝑁+1

Equilibrium Point:

invertible

Source

Consumers



Attractive potential:

Repulsive potential:

CBF-Based Safe Payoff Design
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Ω𝑦
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How to connect 𝜙 with ℎ(𝑦)? 



Based on CBF definition, the ES state 𝑦 will always be in 𝕐\Ωy as long as the 

control action 𝑥 is from

𝜙(𝑥, 𝑦) can be used in the potential function: 

Combined potential function:

Connect 𝝓 with 𝒉(𝒚)
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Dominates when 𝜙 𝑥, 𝑦 > 𝛿

Dominates when 𝜙 𝑥, 𝑦 → 𝛿, for a small 𝛿

Ω𝑥 𝑦 = 𝕏\𝒦𝑐𝑏𝑓(𝑦)



Stability Analysis and Safety Condition
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Payoff function:

Lyapunov function:

𝑈 𝑥, 𝑦 = −𝑢 𝑥, 𝑦 +
𝐾𝑎

2
> 𝑈 𝑥𝑠 , 𝑦𝑠 = 0,

for all 𝑥, 𝑦 ≠ (𝑥𝑠, 𝑦𝑠). 

And we want to prove the time derivative of 𝑈 𝑥, 𝑦  is negative definite.

scaling factor 

1

𝛾
ሶ𝑥⊤𝑝 > 0



Stability Analysis and Safety Condition
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Theorem. Suppose the EDM satisfies the PC and NS conditions, and for any 𝛽 > 0, there 

exists a factor 𝛾 such that 𝛽𝑉 𝑝, 𝑥 ≤ 𝑉(𝛾𝑝, 𝑥). If the initial state (𝑥0, 𝑦0) satisfies 

𝜙 𝑥0, 𝑦0 ≥ 0 and the target state 𝑥𝑠, 𝑦𝑠  satisfies 𝜙 𝑥𝑠, 𝑦𝑠 > 𝛿, the payoff function is 

designed as

𝑃 𝑥, 𝑦 = ∇𝑥𝑢 𝑥, 𝑦 ,

which ensures the safety and asymptotic stability of the coupled system.

If 𝑢𝑦
∗ > 0, we get ሶ𝑢 𝑥, 𝑦 > 0, otherwise 



Simplified Drone System with Noise Control
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• Two active drones with total resource constraints. 

• EDM - 𝑥 𝑡  - resource fractions; ES - 𝑦 𝑡  - drone position.

• The restricted region is defined by the combined drone-collector distance:

Ω𝑦 = {𝑦 ∈ ℝ2: 𝑦 − 50
2

≤ 5}

   Two drones cannot be close to the collector simultaneously. 

Goal: Allocate control resources to guide the drones to a target while 

satisfying the constraints.



Safe Control with CBF-Based Payoff Design
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EDM State: Resource evolution ES State: Drone position 



ES Trajectories with Different EDMs
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Conclusions
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High-Order System?

Convergence time?

Robustness?

Real-world Applications? 
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