
Yifeng Xiao1, Chanwook Oh1, Michele Lora2, and Pierluigi Nuzzo1

1University of Southern California, Los Angeles, CA, US
2University of Verona, Italy

Efficient Exploration of Cyber-Physical System
Architectures Using Contracts and

Subgraph Isomorphism

1. Timing
2. Energy Consumption

3. …

Requirements

Generator

AC Buses

Rectifiers

…

Library

The Challenge: Cyber-Physical System (CPS) Architecture Exploration

Given a set of components and connections, system requirements, and an implementation library,

find an optimal architecture that minimizes a cost function while satisfying all the requirements.

Architecture: Set of components and interconnections

RGRG
RG

G

RGRG
RG

A

RGRG
RG

R

RGRG
RG

D

RGRG
RG

L

…

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2G1

A1

R1

D1

R4

D4

A4

G5

2

• Satisfiability modulo theories [S. Peter et al., 2015]

• Graph-based methods: e.g., based on ordered binary decision diagram

[H. Neema et al., 2014]

• Mixed integer linear programming (MILP)

• Flexible: Can express multiple heterogeneous
requirements and cost objectives

• ArchEx [D. Kirov et al., 2017]: Proposes efficient
encodings and solutions strategies

• Exponential complexity with the size of the
architecture

CPS Design Space Exploration: Existing Approaches

3

Our Approach: Support novel decomposition strategies and search space pruning methods to reduce

exploration costs and enhance scalability

Assume-Guarantee Contracts

Effectively applied to CPS design:

• Virtual integration testing and architecture design of a

vehicle airbag system [Damm et al., 2011]

• Correct-by-construction aircraft electric power system

design [Nuzzo et al., 2014]

Assume-Guarantee (A/G) Contracts Facilitate Compositional Reasoning

4

System

Requirements Requirement

Component
Req.

Component
Req.

Component
Req.

≽

⊗

Refinement

Composition

𝑪 = (𝑨, 𝑮)

[A. Benveniste, et al., 2012]

𝑴 ⊨ 𝑪

ContrArc: Contract-Based Architecture Exploration

5

Formalization and Modeling

MILP-Based Architecture Selection

Contract Refinement Checking

Subgraph Isomorphism Certificate

Generation

Invalid

Certificate

• Contract-based modeling and
decomposition methods to enhance scalability.

• Coordination between MILP solving and graph
analysis to generate infeasible certificates

• Novel certificate generation method combining
contract refinement checking with subgraph
isomorphism to exclude invalid results

Valid

Solution

• Contract-Based Formalization and Modeling

• MILP-Based Architecture Selection

• Contract Refinement Checking

• Subgraph Isomorphism Certificate Generation

• Case Studies

Outline

6

Requirements:

1. Connection and mapping constraints

2. Flow constraints

3. Timing constraints

…

• Assumptions: if a component has connections, it can be mapped to an

implementation in the library.

• Guarantees: if a component has input connections, it should have

output connections.

𝜙𝐴𝑅3
𝐶 ∶= 𝑒𝐴3,𝑅3 + 𝑒𝐴4,𝑅3 + 𝑒𝑅3,𝐷3 + 𝑒𝑅3,𝐷4 ≥ 1 → Σ𝑖𝑚𝑅3,𝑖 = 1

 ∧ 𝑒𝐴3,𝑅3 + 𝑒𝐴4,𝑅3 + 𝑒𝑅3,𝐷3 + 𝑒𝑅3,𝐷4 = 0 → Σ𝑖𝑚𝑅3,𝑖 = 0

𝜙𝐺𝑅3
𝐶 ∶= 𝑒𝐴3,𝑅3 + 𝑒𝐴4,𝑅3 ≥ 1 → 𝑒𝑅3,𝐷3 + 𝑒𝑅3,𝐷4 ≥ 1 ∧ ⋯

Contract-Based Modeling and Formulation

7

RGRG
RG

G

RGRG
RG

A

RGRG
RG

R

RGRG
RG

D

RGRG
RG

L

…

𝑒

𝑚

𝐶𝑅3
𝐶 = (𝜙𝐴𝑅3

𝐶 , 𝜙𝐺𝑅3
𝐶)

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2G1

A1

R1

D1

R4

D4

A4

G5

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2G1

A1

R1

D1

R4

D4

A4

G5

Formally Capture Requirements as Contracts

7

Requirements:

1. Connection and mapping constraints

2. Flow constraints

3. Timing constraints

…

Component-level:

• Assumptions: Input flow remains below the prescribed throughput.

• Guarantees: Input flow and output flow must be balanced.

𝐶𝑅3
𝐹 = (𝜙𝐴𝑅3

𝐹 , 𝜙𝐺𝑅3
𝐹)

𝜙𝐴𝑅3
𝐹 ∶= 𝑓𝑅3

𝑃 ≥ 𝑒𝐴3,𝑅3𝑓𝐴3,𝑅3 + 𝑒𝐴4,𝑅3𝑓𝐴4,𝑅3 ≥ 𝑓𝑅3
𝐶

𝜙𝐺𝑅3
𝐹 ∶= 𝑒𝐴3,𝑅3𝑓𝐴3,𝑅3 + 𝑒𝐴4,𝑅3𝑓𝐴4,𝑅3 ≥ 𝑒𝑅3,𝐷3𝑓𝑅3,𝐷3 + 𝑒𝑅3,𝐷4𝑓𝑅3,𝐷4 + 𝑓𝑅3

𝐶

System-level:

• Assumptions: The generated flow is bounded by the capacity of the

source nodes.

• Guarantees: The total flow consumption is bounded.

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2G1

A1

R1

D1

R4

D4

A4

G5 RGRG
RG

G

RGRG
RG

A

RGRG
RG

R

RGRG
RG

D

RGRG
RG

L

Select a Minimum-Cost Architecture Satisfying the
Component-Level Contracts

Network Library

min
𝑒,𝑚

෍

𝑖=1

𝑁

𝛼𝑖𝛽𝑖𝑐𝑖

s. t. ∀𝑑, ሥ

𝑖=1

𝑁

𝜙
𝐴𝑖

𝑑 ∧ 𝜙
𝐺𝑖

𝑑

8

Select a Minimum-Cost Architecture Satisfying the
Component-Level Contracts

8

MG RGRG
RG

G

RGRG
RG

A

RGRG
RG

R

RGRG
RG

D

RGRG
RG

LL4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2

…

Selected Architecture

min
𝑒,𝑚

෍

𝑖=1

𝑁

𝛼𝑖𝛽𝑖𝑐𝑖

s. t. ∀𝑑, ሥ

𝑖=1

𝑁

𝜙
𝐴𝑖

𝑑 ∧ 𝜙
𝐺𝑖

𝑑

MG RGRG
RG

G

RGRG
RG

A

RGRG
RG

R

RGRG
RG

D

RGRG
RG

LL4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2

9

Check Whether the Selected Architecture Satisfies the System-Level
Contracts Via Refinement Checking

The delay by which a load L is

powered after a generator G is

switched on must be at most 𝑇

…

L4

D3

R2

D2

A2

G2

10

Check Whether the Selected Architecture Satisfies the System-Level
Contracts Via Refinement Checking

𝐶𝐺2

𝐶𝐴2

𝐶𝑅2

𝐶𝐷2

𝐶𝐷3

𝐶𝐿4

𝐶𝐶
𝑇

⊗
Composition

Refinement

≼ 𝐶𝑆
𝑇

The delay by which a load L is

powered after a generator G is

switched on must be at most 𝑇

𝑡5 − 𝑡1 > 𝑇 ∧

ሥ
𝑖=1

4

𝑡𝑖+1 − 𝑡𝑖 ≤ 𝑇𝑖,𝑖+11

2

3

4

5

Reduced to checking the infeasibility of a set of

mixed integer linear constraints

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2G1

A1

R1

D1

R4

D4

A4

G5

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G1 G2

A1

R1

D1

R4

D4

A4

G5

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2G1

A1

R1

D1

R4

D4

A4

G5

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2G1

A1

R1

D1

R4

D4

A4

G5

11

Generate Infeasibility Certificates Via Subgraph
Isomorphism Analysis

Subgraph

Isomorphism

𝑒1

𝑒2

𝑒3

𝑒4
𝑒45

RGRG
RG

G

RGRG
RG

A

RGRG
RG

R

RGRG
RG

D

RGRG
RG

L

𝑚1

𝑚2

𝑚3

𝑚4,𝑚5

𝑚6

∑𝑖𝑒𝑖 + ∑𝑖𝑚𝑖 < 5 + 6 If a path is invalid, then the corresponding assignment to the

edge and mapping variables should no longer be selected

L4

D3

R2

D2

A2

G2

11

Generate Infeasibility Certificates Via Subgraph
Isomorphism Analysis

Subgraph

Isomorphism

⋀

The constraints will be added to the MILP-based problem for architecture selection

in the next iteration

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2G1

A1

R1

D1

R4

D4

A4

G5

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G1 G2

A1

R1

D1

R4

D4

A4

G5

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2G1

A1

R1

D1

R4

D4

A4

G5

L4L1 L3L2

D3

R2 R3

A3

D2

A2

G4G3G2G1

A1

R1

D1

R4

D4

A4

G5

L4

D3

R2

D2

A2

G2

C1

A2

C1

A3

C1

A1

Src

A

C2

A2

C2

A3

C2

A1

M2

A2

M2

A1

C3

A2

C3

A3

C3

A1

C1

B1

C2

B2

M2

B1

M2

B2

C2

B1

C2

B2

M2

B2

C3

B1

C3

B2

Src

B

M1

A2

M1

A3

Sink

A

Sink

B

Product A Product B

M1

A1

M2

A3

M2

B1

C1

B3

M2

B3

C2

B3

C3

B3

M2

B3

SrcA

M3

A

M2

A
M1A

Sink

A

M

AB

M3

B

M2

B

M1

B

SrcB

Sink

B

C1

C2
• Components (in red): Source (Src), Machine (M),

Conveyor (C), Sink

• Implementations (in blue)

• Assemble lines with the minimum cost such that the
total delay to assemble a product is less than 𝑙, and
the mass flow of product elements are balanced.

Case Study: Reconfigurable Production Line (RPL)

12

C1

A2

C1

A3

C1

A1

Src

A

C2

A2

C2

A3

C2

A1

M2

A2

M2

A1

C3

A2

C3

A3

C3

A1

C1

B1

C2

B2

M2

B1

M2

B2

C2

B1

C2

B2

M2

B2

C3

B1

C3

B2

Src

B

M1

A2

M1

A3

Sink

A

Sink

B

Product A Product B

M1

A1

M2

A3

M2

B1

C1

B3

M2

B3

C2

B3

C3

B3

M2

B3

SrcA

M3

A

M2

A
M1A

Sink

A

M

AB

M3

B

M2

B

M1

B

SrcB

Sink

B

C1

C2

Case Study: Reconfigurable Production Line (RPL)

13

• Up to two orders of magnitude acceleration with respect to ArchEx [K. Dmitrii, et al., 2017]

C1

A2

C1

A3

C1

A1

Src

A

C2

A2

C2

A3

C2

A1

M2

A2

M2

A1

C3

A2

C3

A3

C3

A1

C1

B1

C2

B2

M2

B1

M2

B2

C2

B1

C2

B2

M2

B2

C3

B1

C3

B2

Src

B

M1

A2

M1

A3

Sink

A

Sink

B

Product A Product B

M1

A1

M2

A3

M2

B1

C1

B3

M2

B3

C2

B3

C3

B3

M2

B3

Comb B

Case Study: Reconfigurable Production Line (RPL)

13

𝐶𝐵

• Up to two orders of magnitude acceleration with respect to ArchEx [K. Dmitrii, et al., 2017]

• Compositional Exploration: Partition the system and synthesize each line independently
under appropriate assumptions

RL2LL1 RL1LL2

RD

LR RR

RA

LD

LA

RGMGLG RGRG
RG

G

RGRG
RG

A

RGRG
RG

R

RGRG
RG

D

RGRG
RG

L

Case Study: Electrical Power Network (EPN) [Nuzzo et al., 2014]

14

• Components (on left (L) and right(R) side): generator (GEN), AC bus, rectifier unit (RU), DC bus,
load (L)

• Each component has four implementations

• Find the lowest cost EPN to power a set of critical loads, each requiring at least power 𝑝, with a
delay less than 𝑙

…

Case Study: Electrical Power Network (EPN)

15

• Compositional refinement checking enables about two orders of magnitude acceleration

• Subgraph isomorphism-based analysis enables about 20 times less iterations on average

Conclusions

16

Combinatorial
Optimization

Graph-Based
Algorithms

Compositional
Reasoning

Future Work:

• Extensions to support a broader set of requirements

• Integration of other graph-based algorithms with optimization methods

ContrArc

	Slide 1: Efficient Exploration of Cyber-Physical System Architectures Using Contracts and Subgraph Isomorphism
	Slide 2: The Challenge: Cyber-Physical System (CPS) Architecture Exploration
	Slide 3: CPS Design Space Exploration: Existing Approaches
	Slide 4: Assume-Guarantee (A/G) Contracts Facilitate Compositional Reasoning
	Slide 5: ContrArc: Contract-Based Architecture Exploration
	Slide 6: Outline
	Slide 7: Contract-Based Modeling and Formulation
	Slide 8: Formally Capture Requirements as Contracts
	Slide 9: Select a Minimum-Cost Architecture Satisfying the Component-Level Contracts
	Slide 10: Select a Minimum-Cost Architecture Satisfying the Component-Level Contracts
	Slide 11: Check Whether the Selected Architecture Satisfies the System-Level Contracts Via Refinement Checking
	Slide 12: Check Whether the Selected Architecture Satisfies the System-Level Contracts Via Refinement Checking
	Slide 13: Generate Infeasibility Certificates Via Subgraph Isomorphism Analysis
	Slide 14: Generate Infeasibility Certificates Via Subgraph Isomorphism Analysis
	Slide 15: Case Study: Reconfigurable Production Line (RPL)
	Slide 16: Case Study: Reconfigurable Production Line (RPL)
	Slide 17: Case Study: Reconfigurable Production Line (RPL)
	Slide 18: Case Study: Electrical Power Network (EPN) [Nuzzo et al., 2014]
	Slide 19: Case Study: Electrical Power Network (EPN)
	Slide 20: Conclusions

