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The Challenge: Cyber-Physical System (CPS) Architecture Exploration

Requirements
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Architecture: Set of components and interconnections Library

Given a set of components and connections, system requirements, and an implementation library,
find an optimal architecture that minimizes a cost function while satisfying all the requirements.



CPS Design Space Exploration: Existing Approaches

« Satisfiability modulo theories [S. Peter et al., 2015]

» Graph-based methods: e.g., based on ordered binary decision diagram

[H. Neema et al., 2014]
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« Exponential complexity with the size of the
architecture

Our Approach: Support novel decomposition strategies and search space pruning methods to reduce
exploration costs and enhance scalability



Assume-Guarantee (A/G) Contracts Facilitate Compositional Reasoning

Assume-Guarantee Contracts [A. Benveniste, et al., 2012]
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ContrArc: Contract-Based Architecture Exploration

[ Formalization and Modeling ]
1 » Contract-based modeling and

decomposition methods to enhance scalability.

-P[ MILP-Based Architecture Selection ]

« Coordination between MILP solving and graph
1 analysis to generate infeasible certificates

Valid
[ Contract Refinement Checking h

1|nva"d solution ¢ Novel certificate generation method combining
contract refinement checking with subgraph
Subgraph Isomorphism Certificate isomorphism to exclude invalid results
Generation

Certificate



 Contract-Based Formalization and Modeling

» MILP-Based Architecture Selection

 Contract Refinement Checking

« Subgraph Isomorphism Certificate Generation

e Case Studies



Contract-Based Modeling and Formulation

Requirements:

1. Connection and mapping constraints (. Assumptions: if a component has connections, it can be mapped to an

2. Flow constraints implementation in the library.
3. Timing constraints * Guarantees: if a component has input connections, it should have
m output connections.
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Formally Capture Requirements as Contracts

Requirements:

1. Connection and mapping constraints Component-level:
2. Flow constraints « Assumptions: Input flow remains below the prescribed throughput.
3. Timing constraints » Guarantees: Input flow and output flow must be balanced.
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Select a Minimum-Cost Architecture Satisfying the

Component-Level Contracts
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Select a Minimum-Cost Architecture Satisfying the
Component-Level Contracts

Selected Architecture 8



Check Whether the Selected Architecture Satisfies the System-Level

Contracts Via Refinement Checking

The delay by which a load L is
powered after a generator G is
switched on must be at most T




Check Whether the Selected Architecture Satisfies the System-Level

Contracts Via Refinement Checking

The delay by which a load L is

powered after a generator G is Caz o 4t5 —t; >TA

switched on must be at most T /\ 1ti+1 < Ty
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Refinement

Reduced to checking the infeasibility of a set of
mixed integer linear constraints
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Generate Infeasibility Certificates Via Subgraph

Isomorphism Analysis
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Generate Infeasibility Certificates Via Subgraph

Isomorphism Analysis
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Case Study: Reconfigurable Production Line (RPL)

Primary Material Handling System— Gantry or Comveyor

Return Systam —AGY (Autonomous Guided Viehicks), Conveyor or Gantry

» Components (in red): Source (Src), Machine (M),
Conveyor (C), Sink

» Implementations (in blue)

+ Assemble lines with the minimum cost such that the
total delay to assemble a product is less than [, and
the mass flow of product elements are balanced.
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Case Study: Reconfigurable Production Line (RPL)

—@— ArchEx

,;5\103 || —m— ContrArc .
2102 | _
M E]_O E E
€101 |
M 210
109 ¢ 1
|

1 2 3 4 5

Problem Size (n)

* Uptotwo orders of magnitude acceleration with respect to ArchEx [K. Dmitrii, et al., 2017]
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Case Study: Reconfigurable Production Line (RPL)
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* Uptotwo orders of magnitude acceleration with respect to ArchEx [K. Dmitrii, et al., 2017]

+ Compositional Exploration: Partition the system and synthesize each line independently
under appropriate assumptions
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Case Study: Electrical Power Network (EPN)  Nuzzoetal, 2014]

« Components (on left (L) and right(R) side): generator (GEN), AC bus, rectifier unit (RU), DC bus,
load (L)

« Each component has four implementations

» Find the lowest cost EPN to power a set of critical loads, each requiring at least power p, with a
delay less than [
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Case Study: Electrical Power Network (EPN)

Max # in T # of # of w/o. decomposition w/o. subgraph isomorphism Complete ContrArc
(L,R,APU) | variables | constraints Time (s) | # of iterations Time (s) | # of iterations Time (s) | # of iterations

1,0,0 454 195 0.57 3 0.58 3 0.56 3
2,0,0 1178 592 478 8 10.53 28 2.50 4
3,00 2280 1281 50.21 12 84.77 104 8.52 6
4,00 3868 2352 6.31x103 18 4.45%103 231 20.55 4
1,1,0 1138 576 11.18 22 10.72 24 9.15 24
2,1,0 2374 1383 4.09%103 93 4.82x10% 320 27.12 20
2,2,0 4004 2508 2.73x10* 152 5.59%103 1581 1.55%x 102 34
1,1,1 1294 666 62.79 85 13.89 30 16.26 31
2,1,1 2604 1532 1.57x10? 56 1.99x10? 168 40.94 26
2,2,1 4320 2726 2.35x10° 60 3.87x10° 1353 1.06x 102 23

Average 4,04x10° 50.9 1.07x10° 384.1 38.67 17.5

Ratio 104.36 291 27.68 21.95 1.00 1.00

+ Compositional refinement checking enables about two orders of magnitude acceleration

+ Subgraph isomorphism-based analysis enables about 20 times less iterations on average
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Conclusions

ﬁon trArc

Combinatorial
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Future Work:

Extensions to support a broader set of requirements
Integration of other graph-based algorithms with optimization methods
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