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The Challenge: Cyber-Physical System (CPS) Architecture Exploration

Given a set of components and connections, system requirements, and an implementation library, 

find an optimal architecture that minimizes a cost function while satisfying all the requirements.

Architecture: Set of components and interconnections
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• Satisfiability modulo theories [S. Peter et al., 2015]

• Graph-based methods: e.g., based on ordered binary decision diagram 

[H. Neema et al., 2014]

• Mixed integer linear programming (MILP)  

• Flexible: Can express multiple heterogeneous 
requirements and cost objectives

• ArchEx [D. Kirov et al., 2017]: Proposes efficient 
encodings and solutions strategies 

• Exponential complexity with the size of the 
architecture

CPS Design Space Exploration: Existing Approaches
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Our Approach: Support novel decomposition strategies and search space pruning methods to reduce 

exploration costs and enhance scalability



Assume-Guarantee Contracts

Effectively applied to CPS design:

• Virtual integration testing and architecture design of a 

vehicle airbag system [Damm et al., 2011]

• Correct-by-construction aircraft electric power system 

design [Nuzzo et al., 2014]

 

Assume-Guarantee (A/G) Contracts Facilitate Compositional Reasoning
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System 

Requirements Requirement

Component 
Req.

Component 
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⊗

Refinement

Composition

𝑪 = (𝑨, 𝑮)

[A. Benveniste, et al., 2012]

𝑴 ⊨ 𝑪



ContrArc: Contract-Based Architecture Exploration
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Formalization and Modeling

MILP-Based Architecture Selection

Contract Refinement Checking

Subgraph Isomorphism Certificate 

Generation

Invalid

Certificate

• Contract-based modeling and 
decomposition methods to enhance scalability.

• Coordination between MILP solving and graph 
analysis to generate infeasible certificates

• Novel certificate generation method combining 
contract refinement checking with subgraph 
isomorphism to exclude invalid results

Valid

Solution



• Contract-Based Formalization and Modeling

• MILP-Based Architecture Selection

• Contract Refinement Checking

• Subgraph Isomorphism Certificate Generation

• Case Studies

Outline
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Requirements:

1. Connection and mapping constraints

2. Flow constraints

3. Timing constraints

…

• Assumptions: if a component has connections, it can be mapped to an 

implementation in the library.

• Guarantees: if a component has input connections, it should have 

output connections. 

𝜙𝐴𝑅3
𝐶 ∶= 𝑒𝐴3,𝑅3 + 𝑒𝐴4,𝑅3 + 𝑒𝑅3,𝐷3 + 𝑒𝑅3,𝐷4 ≥ 1 →  Σ𝑖𝑚𝑅3,𝑖 = 1  

               ∧ 𝑒𝐴3,𝑅3 + 𝑒𝐴4,𝑅3 + 𝑒𝑅3,𝐷3 + 𝑒𝑅3,𝐷4 = 0 → Σ𝑖𝑚𝑅3,𝑖 = 0

𝜙𝐺𝑅3
𝐶 ∶= 𝑒𝐴3,𝑅3 + 𝑒𝐴4,𝑅3 ≥ 1 → 𝑒𝑅3,𝐷3 + 𝑒𝑅3,𝐷4 ≥ 1  ∧ ⋯ 

Contract-Based Modeling and Formulation
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Formally Capture Requirements as Contracts
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Requirements:

1. Connection and mapping constraints

2. Flow constraints

3. Timing constraints

…

Component-level:

• Assumptions: Input flow remains below the prescribed throughput.

• Guarantees: Input flow and output flow must be balanced.

𝐶𝑅3
𝐹 = (𝜙𝐴𝑅3

𝐹 ,  𝜙𝐺𝑅3
𝐹 ) 

𝜙𝐴𝑅3
𝐹 ∶= 𝑓𝑅3

𝑃 ≥  𝑒𝐴3,𝑅3𝑓𝐴3,𝑅3 + 𝑒𝐴4,𝑅3𝑓𝐴4,𝑅3 ≥ 𝑓𝑅3
𝐶  

𝜙𝐺𝑅3
𝐹 ∶= 𝑒𝐴3,𝑅3𝑓𝐴3,𝑅3 + 𝑒𝐴4,𝑅3𝑓𝐴4,𝑅3 ≥ 𝑒𝑅3,𝐷3𝑓𝑅3,𝐷3 + 𝑒𝑅3,𝐷4𝑓𝑅3,𝐷4 + 𝑓𝑅3

𝐶  

System-level:

• Assumptions: The generated flow is bounded by the capacity of the 

source nodes.

• Guarantees: The total flow consumption is bounded.
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Select a Minimum-Cost Architecture Satisfying the 
Component-Level Contracts

Network Library

min
𝑒,𝑚

෍
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𝑖=1
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𝜙
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𝑑
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Select a Minimum-Cost Architecture Satisfying the 
Component-Level Contracts
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Check Whether the Selected Architecture Satisfies the System-Level 
Contracts Via Refinement Checking

The delay by which a load L is 

powered after a generator G is 

switched on must be at most 𝑇

…
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Check Whether the Selected Architecture Satisfies the System-Level 
Contracts Via Refinement Checking

𝐶𝐺2
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Refinement

≼ 𝐶𝑆
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The delay by which a load L is 

powered after a generator G is 

switched on must be at most 𝑇
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ሥ
𝑖=1

4

𝑡𝑖+1 − 𝑡𝑖 ≤ 𝑇𝑖,𝑖+11
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3

4
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Reduced to checking the infeasibility of a set of 

mixed integer linear constraints 
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Generate Infeasibility Certificates Via Subgraph 
Isomorphism Analysis

Subgraph 

Isomorphism
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Generate Infeasibility Certificates Via Subgraph 
Isomorphism Analysis

Subgraph 

Isomorphism

⋀

The constraints will be added to the MILP-based problem for architecture selection 

in the next iteration
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• Components (in red): Source (Src), Machine (M), 

Conveyor (C), Sink

• Implementations (in blue)

• Assemble lines with the minimum cost such that the 
total delay to assemble a product is less than 𝑙, and 
the mass flow of product elements are balanced.

Case Study: Reconfigurable Production Line (RPL)
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Case Study: Reconfigurable Production Line (RPL)
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• Up to two orders of magnitude acceleration with respect to ArchEx [K. Dmitrii, et al., 2017]
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Case Study: Reconfigurable Production Line (RPL)
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𝐶𝐵

• Up to two orders of magnitude acceleration with respect to ArchEx [K. Dmitrii, et al., 2017]

• Compositional Exploration: Partition the system and synthesize each line independently 
under appropriate assumptions 



RL2LL1 RL1LL2

RD

LR RR

RA

LD

LA

RGMGLG RGRG
RG

G

RGRG
RG

A

RGRG
RG

R

RGRG
RG

D

RGRG
RG

L

Case Study: Electrical Power Network (EPN) [Nuzzo et al., 2014]
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• Components (on left (L) and right(R) side): generator (GEN), AC bus, rectifier unit (RU), DC bus, 
load (L) 

• Each component has four implementations

• Find the lowest cost EPN to power a set of critical loads, each requiring at least power 𝑝, with a 
delay less than 𝑙 

…



Case Study: Electrical Power Network (EPN)
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• Compositional refinement checking enables about two orders of magnitude acceleration

• Subgraph isomorphism-based analysis enables about 20 times less iterations on average    



Conclusions
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Combinatorial 
Optimization

Graph-Based 
Algorithms

Compositional 
Reasoning

Future Work: 

• Extensions to support a broader set of requirements

• Integration of other graph-based algorithms with optimization methods

ContrArc
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