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The Challenge: Ensuring Fair Decisions Made by

Deep Neural Networks (DNNs)

 DNNs increasingly drive high-stakes
decisions for which fairness is essential.

 Individual Fairness: Individuals with similar
unprotected attributes receive similar
outcomes, regardless of their protected
attributes
» Unprotected attributes: qualifications, experience
* Protected attributes: age, race
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Education: Education:
Bachelor’s Degree Bachelor’s Degree
Experience: Experience:

5 Years 5 Years
Occu;_)ation: $60,000 Occu_pation:
Engineer Engineer

We need effective methods for fairness verification and repair




Fairness of Neural Networks: Existing Approaches

* Verification
« Satisfiability modulo theories (SMT)-based methods [Benussi et al., 2022]
» Mixed integer linear programming (MILP) [Biswas and Rajan, 2023; Mohammadi et
al., 2023]
* Repair
» Pre-processing: Remove bias from training data [Barocas et al., 2023]
* In-processing: Modify model parameters during training [Dasu et al., 2024; Li et al.,
2024; Gao et al., 2022; Fu et al., 2024]
» Post-processing: Adjust model predictions after training [Nguyen et al., 2023; Li et al.,
2023; Fu et al., 2024]

Our goal: More scalable verification and more efficient repair



FaVeR: Fairness Verification and Repair

Pre-trained NN, Protected Attributes, Fairness Property
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Individual Fairness

¢ |nStanCG X = (xl,xZ, ...,xM)T, X, — (xll, le, ...,xM’)T
* Attributes: A = {4,, ..., 4y }; Protected attributes: P c 4

Individual Fairness: No pair (x,x') with

Va € A\P : x, = x, ABEP:xp #x5  f(X) # f(X)

Relax unprotected attributes

e-Fairness: Xy — x| < €4

Verification: Check if (x,x") exists with provided constraints



SMC-Based Verification
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SMC-Based Verification

Check if x exists for 2x +1>5)A((x <4) V (x < 1)):
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SMC-Based Verification
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SMC [Shoukry et al., 2018] is shown to outperform other methods for formulas with
a large number of Boolean variables and convex constraints.



Problem Encoding

e-Fairness Property
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Boolean variables m are introduced to encode conditional branching behavior.



Problem Decomposition

Introducing Boolean constraints enables decomposition of the verification problem.

Consider two protected attributes in the problem:

(0)

—|m((,o) A= m Subproblem 1

SMC-Based m((,o) A —-m§°)

Problem

y

Subproblem 2

n® A m®

Subproblem 3

Xo F xo', X1 F xl'

Xo = x(')l X1 + xl'

X0 +* x(')l X1 = x1'
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FaVeR: Fairness Verification and Repair

Pre-trained NN, Protected Attributes, Fairness Property
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High-Sensitivity Neuron Search

The activation of neuron n; .
- Sensitivity score for neuron: 7 W Sensitive 1 Random
Si = |o;(x) — 0;(x)| §100 =
Select high-sensitivity neurons with §; > vy, g
3 90
S

1
y = > (max S; + min S;)
l l
4 5 6 7 8
BM models

Search for the neurons with high contributions to unfairness
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Backward Neuron Adaptation

Unfairness: U = ||f(x) — f(x)]|
Update weights and bias of high-sensitivity neurons from layers L to 1:
W‘(f;,I 1) W(”’ b AW(H 1}
BV b + ApY,
AW.(‘E’E_I) —n Asign(W,i{i’l_l}) S§” W,i(_i’j_l},
Ab(” —nA mgn(b(”) S,E” bf},

The same weight perturbation produces a larger shift in logits when applied to
neurons closer to the output layer.

Each update reduces unfairness for small weights perturbations.
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FaVeR: Fairness Verification and Repair

Pre-trained NN, Protected Attributes, Fairness Property
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Experiments: Fairness Verification

Benchmark: Compas (CP) [Kim et al., 2024]

PA Model #Layers #Neurons Fairify Ver. Fairify Time(s) FaVeR Ver. FaVeR Time (s)
CP-1 2 24 SAT 27.11 SAT
CP-2 5 124 SAT 63.24 SAT
Race CP-3 3 600 UNK 1000+ UNSAT
CP-4 4 900 UNK 1000+ SAT

FaVeR is faster and solves cases unsolved by state-of-the-art comparable
approaches (Fairify, [Biswas and Rajan, 2023]).
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Experiments: Repair for Fairness

Comparison with REGLO [Fu et al., 2024]
Benchmarks: Bank Marketing (BM), Adult Census (AC), German Credit (GC)
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# of repair iterations

Model

BM
GC

AC

Mean
Initial

ACCUracy  accyracy

88.14%
71.60%

82.33%

Mean

69.33%

FaVeR

Repair
Rate

100%

100%

Mean

Runtime Accuracy

30.27 s

Mean

27.87%
69.33%

62.97%

REGLO

Repair Mean
Rate Runtime

60% 35.81s
100%

100% 15.39s

Efficient repair with less reduction in accuracy.
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Conclusions

Fairness, Robustness, Formal Verification

Monotonicity +
Input-Output Property Problem Decomposition
Verification
Counterexample Repaired Model

Localized adjustment, Constraint-augmented fine-tuning, ...
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